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Abstract. The effect of topological excitations in the form of small size (r � ξ(T )) vortex rings on ther-
modynamics of a bulk superconductor is considered. These specific short wavelength fluctuations of the
order parameter are analogous to small vortex-antivortex pairs in superconducting film which were recently
studied in Y.N. Ovchinnikov, A.A. Varlamov, Phys. Rev. Lett. 94, 107007 (2004). The corresponding con-
tribution to the free energy below Tc is calculated. It is shown that fluctuations of this type give the
main temperature dependent contribution to the heat capacity of the superconductor in the sufficiently
large interval of temperatures below the transition point. Important, that the sign of this contribution is
opposite to that one appearing due to the usual long wavelength fluctuation, leading to smearing of the
BCS jump of heat capacity.

PACS. 05.70.Fh Phase transitions: general studies – 74.25.Qt Vortex lattices, flux pinning, flux creep

1 Introduction

Temperature behavior of the physical characteristics of a
superconductor in the vicinity of the transition, but be-
yond the critical region, is usually supposed to be governed
by the long wavelength fluctuations of the order parame-
ter [2]. Nevertheless, recently it was demonstrated [1], that
in the case of 2D superconductor parametrically large in-
terval of temperatures below critical temperature exists,
where the essential role belongs to some specific short
wavelength fluctuations (small vortex-antivortex pairs).
This is due to the fact that the energy of such pairs tends
to zero when the distance between vortex centers becomes
less than ξ (T ) [3,4]. As a consequence, such “cheap” pairs
become “affordable” for thermal fluctuations along with
the long wavelength fluctuations of the order parameter.
In this article we will demonstrate that the analogous sit-
uation takes place also in a bulk superconductor, but the
role of vortex-antivortex pairs here play topological vortex
rings.

In the mean field approximation the heat capacity of
superconductor at the transition temperature undergoes
the jump [5]

CS − CN =
8π2νTc

7ζ (3)
, CN =

1
3
mpFT, (1)
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where CS,N is the heat capacity of superconductor
correspondingly in superconducting and normal states,
ν = mpF/2π2 is the density of states, ζ (x) is Riemann
zeta-function. At least two reasons exist which result in
smearing of the heat capacity jump. These are structure
inhomogeneities of the sample [6] and thermal fluctua-
tions [1]. The contribution of long wavelength fluctuations
to heat capacity is usually assumed to be principal below
Tc both in bulk superconductor and thin superconduct-
ing film [1]. We will show that the process of the vor-
tex rings proliferation in bulk superconductor, similarly to
the vortex-antivortex pairs formation in superconducting
film, can successively compete with it in a wide interval
of temperatures below the transition. As the temperature
decreases the characteristic size of such vortex rings also
decreases. At some temperature this size reaches the in-
teratomic distance and has to be cut off. At this point the
crossover in the temperature dependence of heat capacity
takes place.

2 Vortex rings in bulk superconductor

As the first step of the vortex ring description we will
neglect its spheric asymmetry. In this approximation the
energy of a small vortex ring of radius r � ξ (T ) can
be majorized by the energy of the formation in the bulk
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of superconductor of a normal sphere of radius r. Our as-
sumption lies in the equivalence of these two energies with
the accuracy to O (r/ξ (T ) ). Below we will see that the
main contribution to the partition function comes from
the pairs with characteristic size reff � ξ (T ), where the
coherence length ξ (T ) in the vicinity of transition has the
form:

ξ2 (T ) =
πD

16Tcτ
.

Here τ = 1 − T/Tc is the reduced temperature, D =
η (T )Ddif ,Ddif = vF ltr/3 is the diffusion coefficient, vF is
the Fermi velocity and ltr is the electron transport mean
free path. The function η (T ) was found by Gor’kov in [7]

η (T ) = 1 − 8Tτtr
π

[
ψ

(
1
2

+
1

4πTτtr

)
− ψ

(
1
2

)]
, (2)

where ψ (x) is the Euler psi-function. It must be stressed
that such definition of ξ differs by a factor of two from the
standard Ginzburg-Landau expression.

In order to calculate the contribution to heat capacity
related with the formation of the small vortex rings let
us start from the Ginzburg-Landau functional for the free
energy of superconductor

FS [∆v.r. (r) , ∆∗
v.r. (r)] −FN =

ν

∫
d3r

[
−τ |∆v.r. (r) |2 +

πD
8Tc

|∂−∆v.r. (r) |2

+
7ζ (3)

16π2T 2
c

|∆v.r. (r) |4
]

+
1
8π

∫
d3r [rotA − H0]

2
. (3)

Here ∂− = ∂/∂r−2ieA, A is the vector potential and
∆v.r. (r) is the superconducting order parameter corre-
sponding to the configuration with one vortex ring. Our
goal is to find the minimal energy Fv.r. necessary for for-
mation of such ring.

In accordance with the above assumption in practice
we will look for the free energy necessary for formation of
the normal phase sphere of the radius a � ξ (T ) in su-
perconductor. This can be done finding the corresponding
order parameter profile ∆sp (r). Formally one has to solve
the Ginzburg-Landau equation

πD
8Tc

1
r2

∂

∂r

(
r2
∂

∂r

)
∆sp (r) + τ∆sp (r)

− 7ζ (3)
16π2T 2

c

∆3
sp (r) = 0 (4)

with the boundary condition

∆sp (a) = 0. (5)

Passing to the dimensionless variables

ρ = r/ξ(T ), ∆̃(ρ) = ∆sp [ξ (T )ρ] /∆0, ã = a/ξ(T )
(6)

where
∆2

0 (T ) = 8π2T 2
c τ/ [7ζ (3)] ,

we reduce the equation (4) and its boundary condition (5)
to the form

2
ρ2

∂

∂ρ

(
ρ2 ∂

∂ρ

)
∆̃ (ρ) + ∆̃ (ρ) − ∆̃3 (ρ) = 0, (7)

∆̃ (ã) = 0. (8)

In the region ρ� 1 one can find

∆̃ (ρ) = A1

(
1 − ã

ρ

)
(9)

where A1 is some numerical factor. In the region ρ � 1
the order parameter ∆̃ (ρ) can be presented in the form

∆̃ (ρ) = 1 − f (ρ) , (10)

where the function f (ρ) satisfies the equation

1
ρ2

∂

∂ρ

(
ρ2 ∂

∂ρ

)
f (ρ) − f (ρ) = 0. (11)

The solution of this equation which decays at infinity is

f (ρ) =
A2

ρ
exp (−ρ) . (12)

Matching solutions (9) and (10), (12) in the region ρ ∼ ã
one can find the values of the order parameter in all do-
main ρ > 0:

∆̃ (ρ) = 1 − ã

ρ
exp (−ρ) . (13)

Substituting expression (13) in formula (3) one can find
the value of free energy necessary to create the normal
sphere of the radius a:

Fsp (ã, T ) =
7ζ (3)∆4

0

πT 2
c

νξ3 (T )
∫ ∞

0

dρρ2 ã

ρ
exp (−ρ) . (14)

In accordance with our assumption this value with the
accuracy to O (ã/ξ (T ) ) coincides with the energy cost of
corresponding vortex ring:

Fv.r. (ã) = B (T ) ã (15)

with

B (T ) =
7ζ (3)∆4

0

πT 2
c

νξ3 (T ) . (16)

3 Vortex rings thermodynamics

In order to take into account the specifics of the fluctu-
ation processes under consideration let us start from the
general expression for the partition function in the vicinity
of Tc

Z =
∫

D∆(r)
∫

D∆∗(r) exp
{
−FS [∆ (r) , ∆∗ (r)]

T

}

(17)
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with FS [∆ (r) , ∆∗ (r)] being the Ginzburg-Landau func-
tional. In contrast to the usual Ginzburg-Landau approx-
imation, where the simple long wavelength fluctuations
are considered, the calculation of the functional integral
in (17) now has to take into account the vast variety of
the order parameter functions ∆v.r. (r), which correspond
to specific realizations of vortex rings.

First, let us separate the partition function Z0 of the
bulk superconductor without fluctuations:

Z = Z0 · Z(fl).

We will calculate the partition function Z(fl) in the gas ap-
proximation. Namely, we will assume that the main con-
tribution comes from small vortex rings and neglect their
overlap. Hence

Z(fl) = Z
V/[ 4

3 πα3ξ3(T )]
v.r. , (18)

where V is the sample volume. The power V/[43πα
3ξ3 (T )]

in equation (18) takes into account the combinatorial fac-
tor corresponding to the independent formation of vortex
rings. Since ξ(T ) is the only parameter with the dimen-
sionality of length in the Ginzburg-Landau functional it
is clear that the coefficient α ∼ 1. The choice of its form
is dictated by the fact that as we have seen above even a
small vortex ring disturbs the order parameter on the scale
ξ (T ), so the maximum density of non-interacting rings is
indeed of the order of ξ−3 (T ).

Taking into account formulas (15) and (16) one can
find

Zv.r. =
1

[αpF ξ (T )]3
+3

∫ α

1/[αpF ξ(T )]

ã2dã exp
{
−Fsp (ã, T )

T

}

=
1

[αpF ξ (T )]3
+ 3

[
T

αB (T )

]3

×
[
Γ

(
3,

B (T )
αTpF ξ (T )

)
− Γ

(
3,
αB (T )
T

)]
(19)

where Γ (β, x) is the incomplete Euler gamma-function.
Formally the gas approximation means that

αB (T ) � T. (20)

This condition is equivalent to the requirement

τ � Gi(3), (21)

where the Ginzburg-Levanyuk parameter of a bulk super-
conductor is determined from the condition [2]

νGi(3)∆
2
0ξ

3 (T ) =
Tc

16π
√

2
⇒ Gi(3)

=

[
7ζ (3)

128
√

2π3Tcν

(
16Tc

πD
)3/2

]2

. (22)

For temperatures which satisfy the condition (21) one can
use the asymptotic expression for incomplete gamma func-
tion and get

Zv.r. =
1

[αpF ξ (T )]3
+ 6

[
T

αB (T )

]3

exp
[
− B (T )
αTpF ξ (T )

]

×
[
1 +

B (T )
αTpF ξ (T )

+
1
2

(
B (T )

αTpF ξ (T )

)2
]
.

In result fluctuation generation of the small size vortex
rings results in appearance of the correction to the free
energy

Fv.r (T ) = − 3TV
4πα3ξ3 (T )

lnZv.r.. (23)

Corresponding correction to the heat capacity is

Cfl.r (T → Tc) = −T
(
∂2Fv.r (T )

∂T 2

)
. (24)

Looking at the formulas (22), (23) and (24) one can
see that besides the narrow region of strong fluctuations
τ � Gi(3) other two regions of temperatures exist:

Gi(3) � τ � τcross (25)

and
τcross � τ � 1, (26)

where

τcross = Gi(3) [pF ξ (Tcross)]
2 =

21ζ (3)
4
√

2π2ηpF ltr
=

36
π
Gi(2)

(27)
is the value of crossover temperature. Let us stress that
with the accuracy to the numerical factor it coincides with
the 2D Ginzburg-Levanyuk number.

In the first region (see Eq. (25)) fluctuation correction
to the heat capacity due to generation of small vortex
rings is

Cfl.r (τ) = − 9V
4πα3

∂2

∂τ2

[
1

ξ3 (τ)
ln

(
αB (T )
61/3T

)]
(28)

= −CN (Tc)
324

√
2

7ζ (3)α3

√
Gi(3)

τ

×
[
ln

(
α

23/261/3

√
τ

Gi(3)

)
+ 4/3

]
. (29)

In the second region (see Eq. (26)) corresponding correc-
tion is

Cfl.r(τ) = −CN(Tc)
324

√
2

7ζ(3)α3

√
Gi(3)

τ
{ln[αpF ξ(τ)] − 4/3}.

(30)
Let us stress that in both regions the correction is neg-
ative and exceeds the fluctuation contribution related to
the long wavelength fluctuations [1] by large parameter{
ln

(
τ/Gi(3)

)
, ln [pF ξ (τ)]

}
.



424 The European Physical Journal B

4 Case of low temperatures

In the region of low temperatures T � Tc the electronic
contribution to heat capacity of superconductor, being
proportional to exp (−∆ (T ) /T ) is exponentially small. It
turns out that the fluctuation corrections to the heat ca-
pacity in this region are also small by the same parameter.
The latter circumstance is related with the weak temper-
ature dependence of the parameters ∆ (T ) and ξ (T ) at
temperatures T � Tc. In the BCS approximation temper-
ature dependence of the order parameter is determined by
the equation [8,9]:

ln
T

Tc
= 2πT

∑
ωn>0

(
1
ωn

− 1√
ω2

n +∆2
0 (T )

)
, (31)

where ωn = 2πT (n+ 1/2) is the fermionic Matsubara fre-
quency. The correlation length ξ (τ) in the most general
case can be determined from the position of the pole of
the linear response operator to the modulus of order pa-
rameter [10]:

T
∑

ωn>0

(
ω2

n

[ω2
n +∆2

0 (T )]
[√

ω2
n +∆2

0 (T ) −D/2ξ2 (T )
]

− 1√
ω2

n +∆2
0 (T )

)
= 0. (32)

At low temperatures (T � Tc) both functions ∆ (T )
and ξ (T ) tend to their values at zero temperature
{∆ (0) , ξ (0)} being only exponentially small different
from them:

∆ (T ) −∆ (0) ∼ exp (−∆ (T ) /T ) . (33)

Analyzing equations (31) and (32) at T = 0 one finds

∆2 (0) ∼
(
πTc

γ

)2

, ξ2 (0) =
D

2θ∆ (0)
. (34)

Here γ = expC,C = 0.577 is the Euler constant, while
θ = 0.76595 is the solution of the transcendental equation

π

4
=

√
1 − θ2

[
π

2
− arctan

√
1 − θ

1 + θ

]
. (35)

In low temperature region the exact expression for the
free energy with the strong space dependence of the order
parameter ∆ (r) is unknown. It is why for the vortex rings
contribution to the heat capacity in this region only the
rough estimate basing in equations (31–33) can be done,
which we do not present here.

5 Discussion

In conclusion, let us summarize the results. We have
demonstrated that the proliferation of small vortex rings
in a bulk superconductor, analogously to the small vortex-
antivortex pairs in the case of 2D superconducting film,
results in appearance of the specific contribution to its
heat capacity. This contribution dominates over the usual
GL fluctuation correction in the wide interval of temper-
atures below Tc. We found that both in two and three
dimensional cases full fluctuation correction to heat ca-
pacity in the vicinity of the superconducting transition
has the opposite signs at the opposite sides of the region
of strong fluctuations (|τ | � Gi(3)). This fact is related to
the presence of the heat capacity jump at the transition
point in the mean field approximation. Let us recall that
the coherence length ξ (T ) in this approximation has the
same singularity |τ |−1/2 with the coefficients which differ
by factor

√
2 below and above the transition point.

One can expect that considered in this communication
type of fluctuations contributes not only to the thermo-
dynamic but also to the transport properties of supercon-
ducting films.
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